Sparse, mean reverting portfolio selection using simulated annealing
نویسندگان
چکیده
We study the problem of finding sparse, mean reverting portfolios based on multivariate historical time series. After mapping the optimal portfolio selection problem into a generalized eigenvalue problem, we propose a new optimization approach based on the use of simulated annealing. This new method ensures that the cardinality constraint is automatically satisfied in each step of the optimization by embedding the constraint into the iterative neighbor selection function. We empirically demonstrate that the method produces better mean reversion coefficients than other heuristic methods, but also show that this does not necessarily result in higher profits during convergence trading. This implies that more complex objective functions should be developed for the problem, which can also be optimized under cardinality constraints using the proposed approach.
منابع مشابه
The project portfolio selection and scheduling problem: mathematical model and algorithms
This paper investigates the problem of selecting and scheduling a set of projects among available projects. Each project consists of several tasks and to perform each one some resource is required. The objective is to maximize total benefit. The paper constructs a mathematical formulation in form of mixed integer linear programming model. Three effective metaheuristics in form of the imperialis...
متن کاملComparison of Simulated Annealing and Electromagnetic Algorithms for Solution of Extended Portfolio Model
This paper presents two meta-heuristic algorithms to solve an extended portfolio selection model. The extended model is based on the Markowitz's Model, aiming to minimize investment risk in a specified level of return. In order to get the Markowitz model close to the real conditions, different constraints were embedded on the model which resulted in a discrete and non-convex solution space. ...
متن کاملSimulated annealing for complex portfolio selection problems
This paper describes the application of a simulated annealing approach to the solution of a complex portfolio selection model. The model is a mixed integer quadratic programming problem which arises when Markowitz classical mean–variance model is enriched with additional realistic constraints. Exact optimization algorithms run into difficulties in this framework and this motivates the investiga...
متن کاملProject Portfolio Selection with the Maximization of Net Present Value
Projects scheduling by the project portfolio selection, something that has its own complexity and its flexibility, can create different composition of the project portfolio. An integer programming model is formulated for the project portfolio selection and scheduling.Two heuristic algorithms, genetic algorithm (GA) and simulated annealing (SA), are presented to solve the problem. Results of cal...
متن کاملArtificial Bee Colony Algorithm Hybridized with Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Selection Problem
Portfolio selection (optimization) problem is a very important and widely researched problem in the areas of finance and economy. Literature review shows that many methods and heuristics were applied to this hard optimization problem, however, there are only few implementations of swarm intelligence metaheuristics. This paper presents artificial bee colony (ABC) algorithm applied to the cardina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Algorithmic Finance
دوره 2 شماره
صفحات -
تاریخ انتشار 2013